
ARTICLE IN PRESS
0889-9746/$ - se

doi:10.1016/j.jfl

�Correspond
E-mail addr
Journal of Fluids and Structures 25 (2009) 304–320

www.elsevier.com/locate/jfs
Effect of uncertainty on the bifurcation behavior of pitching
airfoil stall flutter

S. Sarkara,�, J.A.S. Witteveenb, A. Loevenb, H. Bijlb

aDepartment of Aerospace Engineering, IIT Madras, Chennai 600036, India
bFaculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands

Received 17 April 2007; accepted 11 June 2008
Abstract

In this paper the effect of system parametric uncertainty on the stall flutter bifurcation behavior of a pitching airfoil is

studied. The aerodynamic moment on the two-dimensional rigid airfoil with nonlinear torsional stiffness is computed

using the ONERA dynamic stall model. The pitch natural frequency, a cubic structural nonlinearity parameter,

and the structural equilibrium angle are assumed to be uncertain. The effect on the amplitude of the response, the

bifurcation of the probability distribution, and the flutter boundary is considered. It is demonstrated that the system

parametric uncertainty results already in 5% probability of pitching stall flutter at a 12.5% earlier position than the

point where a deterministic analysis would predict unstable behavior. Probabilistic collocation is found to be more

efficient than the Galerkin polynomial chaos method and Monte Carlo simulation for modeling uncertainty in the post-

bifurcation domain.

r 2008 Elsevier Ltd. All rights reserved.

Keywords: Stall flutter; Uncertainty quantification; Galerkin polynomial chaos; Probabilistic collocation; Flutter boundary
1. Introduction

It is increasingly acknowledged that flutter analysis should include the quantification of the effects of system

parametric uncertainty. Dynamical systems are known to be sensitive to physical uncertainties, since they often amplify

this random variability with time. A stable response of a nonlinear dynamical system can change at a bifurcation

boundary into an oscillatory instability that can grow in an unbounded fashion, which is known as flutter (Fung, 1955).

Flutter of aircraft and rotor structures is of practical interest to engineers, since it can lead to fatigue damage or failure

of the structure. System parametric uncertainties can significantly affect the onset and properties of flutter. The added

value of modeling these uncertainties with probabilistic methods compared to deterministic approaches to robustness is

that they quantify the effect of uncertainties in a probabilistic sense. Based on the resulting detailed probabilistic

information well-balanced decisions can be made in a robust design optimization process.

Monte Carlo (MC) simulation and perturbation techniques are classical probabilistic methods for uncertainty

quantification. However, stochastic spectral methods based on the polynomial chaos expansion may be more efficient

and accurate alternatives. The polynomial chaos expansion by Wiener (1938) is a polynomial expansion in probability
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space in terms of independent random variables and deterministic coefficients. The Galerkin polynomial chaos (GPC)

method proposed by Ghanem and Spanos (1991) employs a Galerkin stochastic finite element approach to solve for the

deterministic coefficients. The Galerkin projection in probability space results in a coupled set of deterministic

equations. This type of methods are called intrusive methods, since the deterministic solver has to be altered to solve for

the coupled equations. The method can achieve exponential convergence for Gaussian distributions, since it is based on

Gaussian random variables and Hermite polynomials (Ghanem, 1999). The exponential convergence has been extended

to more distributions in the generalized polynomial chaos by Xiu and Karniadakis (2002) and for arbitrary

distributions by Wan and Karniadakis (2006a) and Witteveen and Bijl (2006a). Other nonpolynomial expansions

are the wavelet based Wiener–Haar expansion of Le Maı̂tre et al. (2004) and the Fourier-chaos expansion of Millman

et al. (2003).

In order to avoid solving the coupled set of equations of the GPC method intrusively, several nonintrusive uncoupled

alternatives have been proposed. In nonintrusive polynomial chaos methods a deterministic solver is used as a black-

box like in MC simulation. The probabilistic collocation (PC) method is such a nonintrusive polynomial chaos method

in which the deterministic coefficients are solved for by collocating the problem in Gauss points in probability space

(Babuska et al., 2007; Loeven et al., 2007). Suitable Gauss points are the zeros of polynomials orthogonal with respect

to the probability density of the uncertain system parameter. Exponential convergence with respect to the order of

approximation can be obtained for arbitrary probability distributions. Babuska et al. (2007) have proven that for

elliptic partial differential equations the PC method is equivalent to the GPC method. The nonintrusive polynomial

chaos method proposed by Hosder et al. (2006) and Walters (2003) is based on approximating the polynomial chaos

coefficients. A similar approach called nonintrusive spectral projection is used by Reagan et al. (2003). The stochastic

collocation method proposed by Mathelin and Hussaini (2003) and Mathelin et al. (2005) showed a significant

decrease in computational time compared to the GPC method. When multiple uncertain parameters are involved the

collocation grids are constructed using tensor products of one-dimensional quadrature grids. The amount of collocation

point, and therefore the number of required deterministic solves, increases rapidly. As an alternative, sparse grid

collocation approaches are used (Ganappathysubramanian and Zabaras, 2007; Gerstner and Griebel, 1998; Xiu and

Hesthaven, 2005).

Although polynomial chaos methods have been successful in many problems, often MC simulation or perturbation

techniques are used for modeling uncertainty in flutter analysis. MC simulations have, for example, been used by

Lindsley et al. (2002, 2006) to study the periodic response of nonlinear plate equations under supersonic flow subject to

uncertain modulus of elasticity and boundary conditions. The effect of uncertainties on panel flutter has been analyzed

by Liaw and Yang (1993) using a second moment perturbation based stochastic finite element model. A first order

perturbation method has been applied to a bending-torsion flutter model in an unpublished report by Poirion [see Lind

and Brenner (1998) and Pettit (2004a)], to predict flutter probability with uncertain structural mass and stiffness.

Poirion (2000) has also investigated nonlinear random oscillations with application to aeroservoelastic systems using

simulation techniques for Gaussian and non-Gaussian random processes and random delay modeling of control

systems. Poirel and Price (2003) have solved random bending-torsion flutter equations under turbulent flow conditions

with a linear structural model using a MC type approach. Choi and Namachchivaya (2006) have found qualitatively

different response density functions in nonlinear panel flutter under supersonic flow subject to random fluctuations in

the turbulent boundary layer using nonstandard reduction through stochastic averaging. Ibrahim et al. (2005) and

Beloiu et al. (2005) have investigated the effects of boundary condition and joint condition uncertainties on a panel

flutter system. De Rosa and Franco (2008) have presented the response of a plate subjected to stochastic flow-field due

to the effect of turbulent boundary layer using numerical and analytical approach. Pettit (2004a, b) has outlined that

small uncertainties in the system parameters, external loads and boundary conditions can significantly modify the static

and dynamic aeroelastic system response. Various uncertain aeroelastic analyses for plate-like structures are discussed

in Dowell et al. (1989) and Nigam and Narayanan (1994).

Studies that use polynomial chaos methods to predict the effect of uncertainties in flutter analysis report that the

polynomial chaos expansion can have difficulty capturing the uncertain response after long-term time integration. Pettit

and Beran (2004, 2006) have found that the Wiener–Hermite expansion suffers from energy loss in representing the

periodic response of bending-torsion flutter model for long integration times. For the wavelet based Wiener–Haar

expansion of Le Maı̂tre et al. (2004), this problem is less dominant (Pettit and Beran, 2006). Millman et al. (2003)

demonstrated that a Fourier-chaos expansion can be computationally more efficient for a bending-torsion flutter

problem subjected to Gaussian distributions than the regular Wiener–Hermite expansion. Lucor and Karniadakis

(2004) and Wan and Karniadakis (2006b) have observed that the effect of uncertainties on the frequency of the response

is of major influence on long-term integration accuracy of polynomial chaos approximations.

In this paper, the effect of parametric uncertainty on the stall flutter behavior of a pitching airfoil is studied using

polynomial chaos expansion methods. This study can be considered a qualitative assessment of the effect of uncertainty
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on the bifurcation behavior of the system. Stall flutter is, for example, of interest to wind turbine research community.

In the present deterministic model, the blade structure is modeled as a two-dimensional rigid airfoil with torsional

degree-of-freedom. The structural stiffness (Fragiskatos, 1999) in the torsional direction is modeled using a

combination of a linear and a cubic nonlinear spring (Lee and Tron, 1989; Lee et al., 1999), since a blade section which

is being twisted is likely to behave as a cubic stiffness hardening spring (Lee et al., 1999). The stall aerodynamic moment

is computed using the ONERA semi-empirical dynamic stall model as shown by Beedy et al. (2003) and Dunn and

Dugundji (1992). This approach is commonly used in many engineering aeroelastic applications (Lee et al., 1999; Sheta

et al., 2002; Tang and Dowell, 1993a, b). Tang and Dowell (2004) have also used the ONERA dynamic stall model to

investigate the effects of structural nonlinearity on a high aspect ratio binary wing flutter. In another recent work,

Svácek et al. (2007) have investigated two-dimensional flutter in the dynamic stall regime; however, they have not used a

semi-empirical model to compute the aerodynamic loads, but with a finite element based discretization of the

Navier–Stokes equations.

An earlier deterministic study by Sarkar and Bijl (2008) on a stall flutter system has pointed out that the response is

sensitive to model parameter variations. In this paper the GPC method and the PC method are applied to study the

effect of uncertainty in several model parameters. The pitch natural frequency, the cubic structural nonlinearity

parameter, and the structural equilibrium angle are assumed to be uncertain.

The efficiency of both the GPC method and the PC method are compared for the case with the uncertain pitch

natural frequency. The effect of the polynomial chaos expansion order on the accuracy of the long-term time

integration results is studied. A comparison of the computational costs of the two methods shows that the PC method is

more efficient for the highly nonlinear model. The PC method is further employed to study the effect of the uncertain

cubic structural nonlinearity parameter and the structural equilibrium angle on the bifurcation behavior of the system.

In these cases the effect on the amplitude of the response, the bifurcation of the probability distribution, and the flutter

boundary is considered.

The polynomial chaos method and the PC method are briefly reviewed in Section 2. In Section 3 the equation of

motion and the aerodynamic model for the stall flutter problem are given. Numerical results are presented in Section 4

and the conclusions are summarized in Section 5.
2. Polynomial chaos expansion methods

Modeling uncertainties in the stall flutter problem results in a system of stochastic differential equations based on a

probability space (O,F, P). Let o 2 Uð0; 1Þ be an element of the sample space O,F � 2O the s-algebra of events and P

a probability measure. Random event o is defined as uniformly distributed on ½0; 1� in accordance with the standard

technique for generating random numbers of an arbitrary distribution by projecting uniformly distributed numbers o
onto probability measure P, as in Bhattacharya and Waymire (2007). The argument o is used for an uncertain variable

uðt;oÞ to emphasize the fact that an uncertain variable is a function of a random event. Suppose that the stall flutter

model is described by the following equation for uðt;oÞ with an nonlinear operator L and a source term S,

Lðt;o; uðt;oÞÞ ¼ Sðt;oÞ. (1)

Let us consider the operator to be a differential operator and the system is described by a nonlinear stochastic

differential equation for uðt;oÞ with a nonlinear function gðuðt;oÞÞ

dðuðt;oÞÞ
dt

þ c1ðoÞuðt;oÞ þ c2ðoÞgðuðt;oÞÞ ¼ f ðtÞ, (2)

with time t and appropriate initial conditions. The system is assumed to have parametric uncertainty through c1; c2 with
known probability distribution. The GPC method and the PC method to propagate the uncertainty through (1) are

discussed in this section.

2.1. GPC method

The uncertain variable uðt;oÞ and the uncertain parameter can be represented by a polynomial chaos expansion

uðt;oÞ ¼
X1
i¼0

uiðtÞCiðxðoÞÞ, (3)

where fuiðtÞg denotes the deterministic polynomial chaos coefficients and fCiðxðoÞÞg denotes orthogonal polynomials in

terms of a random variable xðoÞ. The random variable xðoÞ is obtained from a linear transformation of the uncertain
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physical parameter to a corresponding standard domain, i.e. ½�1; 1�, ½0;1Þ or (�1;1). The polynomials fCiðxðoÞÞg
satisfy the following orthogonality relation:

hCiðxÞ;CjðxÞi ¼
Z
suppx

CiðxÞCjðxÞwxðxÞdx ¼ hC2
i ðxÞidij , (4)

where dij denotes the Kronecker delta and h�; �i denotes an inner product, wxðxÞ is a weighting function, and suppx is the

support of xðoÞ. To be able to obtain exponential convergence for sufficiently smooth solutions, the weighting function

of the integration is chosen to be equal to the probability density f xðxÞ of xðoÞ, i.e. wxðxÞ ¼ f xðxÞ (Wan and Karniadakis,

2006a; Witteveen and Bijl, 2006a).

The deterministic coefficients fuiðtÞg in (3) can be solved for numerically using a stochastic finite element approach, as

shown by Ghanem and Spanos (1991). For the numerical implementation the infinite summation in x in (3) is replaced

by a truncated finite-term summation

uðt;oÞ ¼
XN

i¼0

uiðtÞCiðxðoÞÞ. (5)

We also assume,

c1;2 ¼
X1
i¼0

c1;2iCiðxðoÞÞ. (6)

Substituting the above into the governing Eq. (2), we obtain

XN

i¼0

d

dt
uiCi þ

X1
j¼0

XN

i¼0

uic1jCiCj þ
X1
j¼0

c2jg
XN

i¼0

uiCi

 !
¼ f ðtÞ. (7)

For gðuÞ being a cubic nonlinear function, gð
PN

i¼0 uiCiÞ will take the following form:

gðuÞ ¼ u3 ¼
XN

i¼0

uiCi

 !3

¼
XN

i1¼0

XN

i2¼0

XN

i3¼0

ui1Ci1ui2Ci2ui3Ci3. (8)

A stochastic Galerkin projection is employed to obtain a system of coupled N þ 1 deterministic equations for the

N þ 1 deterministic coefficients. The Galerkin projection in probability space of (7) onto each polynomial basis

fCkðxðoÞÞgNk¼0 in the sense of inner product (4) yields

XN

i¼0

d

dt
uiCi þ

XN

i¼0

X1
j¼0

uic1jCiCj þ
X1
j¼0

c2jg
XN

i¼0

uiCi

 !" #
;CkðxÞ

* +
¼ hf ðtÞ;CkðxÞi, (9)

for k ¼ 0; 1; . . . ;N. The Galerkin projection results in a coupled set of N þ 1 deterministic equations:

duk

dt
þ

1

hC2
ki

X1
j¼0

XN

i¼0

uic1jhCiCjCki þ
X1
j¼0

c2jg
XN

i¼0

uiCi

 !" #
;CkðxÞ

* +
¼ hf ðtÞ;CkðxÞi. (10)

The inner product term hCiCjCki along with 1=hC2
ki can be evaluated analytically. For analytic nonlinearities like a

cubic function shown in (8), the third term in the left-hand side of (10) will also have inner product terms which can be

evaluated analytically before the time marching process. For nonanalytic forms the term needs to be evaluated

numerically using some numerical integration process like Simpson’s rule, etc.

The original homogeneous polynomial chaos (Ghanem and Spanos, 1991) is based on a Gaussian probability

measure P and a Gaussian random variable xðoÞ. For that case Hermite polynomials satisfy orthogonality relation (4).

For any arbitrary distributions the orthogonal polynomials are constructed using other classical polynomials or an

orthogonalization method (Wan and Karniadakis, 2006a; Witteveen and Bijl, 2006a; Xiu and Karniadakis, 2002). In

this work the uncertain system parameters are assumed to be lognormally distributed. A lognormal distribution is often

a good model for nonnegative physical parameters. The orthogonal polynomials fCiðxðoÞÞgNi¼0 are constructed using

Gram–Schmidt orthogonalization (Gautschi, 2004), in which the inner products are written as summations of the

analytically known raw moments of the lognormal distribution. Constructing the polynomials in this way results in

negligible additional computational costs compared to using classical polynomials.
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2.2. PC method

Another approach to obtain a polynomial chaos approximation of the uncertain response uðt;oÞ is the PC method of

Babuska et al. (2007) [also see Loeven et al. (2007)]. In this nonintrusive approach the polynomial chaos coefficients are

computed by solving uncoupled deterministic problems for various parameter values. The uncertain system parameter

is written in terms of an Nth order polynomial chaos expansion with Lagrange basis polynomials fhiðxðoÞÞg

uðt;oÞ ¼
XNþ1
i¼1

u�i ðtÞhiðxðoÞÞ, (11)

where fu�i ðtÞg
Nþ1
i¼1 are the realizations of uðt;oÞ at the N þ 1 collocation points fxig

Nþ1
i¼1 , with xi ¼ xðoiÞ. The Lagrange

interpolating polynomial chooses fhiðxðoÞÞgNþ1i¼1 of order N through the collocation points fxig are given by

hiðxðoÞÞ ¼
YNþ1
j¼1
jai

xðoÞ � xj

xi � xj

, (12)

such that hiðxjÞ ¼ dij . Suitable collocation points are the Gaussian quadrature points corresponding to the inner product

(4) with weighting function wxðxÞ ¼ f xðxÞ. These collocation points are the roots of the orthogonal polynomial

CNþ2ðxðoÞÞ given by (4). The Gauss quadrature points can be computed for any arbitrary distributions using, for

example, the Golub–Welsch algorithm, as shown by Golub and Welsch (1969). This algorithm employs the recurrence

coefficients (Gautschi, 2005) of the orthogonal polynomials fCiðxÞg.
The uncoupled set of N þ 1 equations for the deterministic coefficients fu�i ðtÞg

Nþ1
i¼1 can be derived by substituting

expansion (11) into the governing Eq. (2):

d

dt

XNþ1
i¼1

u�i ðtÞhiðxÞ

 !
þ c1ðoÞ

XNþ1
i¼1

u�i ðtÞhiðxÞ þ c2ðoÞg
XNþ1
i¼1

u�i ðtÞhiðxÞ

 !
� f ðtÞ. (13)

A Galerkin projection of each Lagrangian basis fhjðxðoÞÞgNþ1j¼1 results in

d

dt

XNþ1
i¼1

u�i ðtÞhiðxÞ

 !
þ c1ðoÞ

XNþ1
i¼1

u�i ðtÞhiðxÞ þ c2ðoÞg
XNþ1
i¼1

u�i ðtÞhiðxÞ

 ! !
; hjðxÞ

* +
¼ hf ðtÞ; hjðxÞi, (14)

for j ¼ 1; 2; . . . ;N þ 1. Approximating the inner product in (14) using numerical integration and using property hiðxjÞ ¼

dij of the Lagrange polynomials results in the following set of uncoupled deterministic equations

dðu�j ðtÞÞ

dt
þ c1ðojÞu

�
j ðtÞ þ c2ðojÞgðu

�
j ðtÞÞ ¼ f ðtÞ, (15)

for j ¼ 1; 2; . . . ;N þ 1. The distribution function can be constructed from the expansion coefficients u�i ðtÞ using

expansion (11).
3. Stall flutter model

In this section the single-degree-of-freedom pitching airfoil stall flutter model is described. It consists of an equation

of motion for the two-dimensional rigid airfoil with nonlinear torsional spring stiffness. The aerodynamic moment

including the stall behavior is modeled using the ONERA dynamic stall model.

3.1. Equation of motion

A schematic plot of the two-dimensional blade section of unit span and the coordinate system is given in Fig. 1.

The equation of motion for the single-degree-of-freedom pitching oscillation is given by Fragiskatos (1999) and

Fung (1955):

Ia €aþ Iao2
aaþ Knl1a3 ¼MðtÞ. (16)

Here, Ia is the wing mass moment of inertia, a is the effective angle of attack, oa is the natural frequency of the pitch

elastic mode, Knl1 is a nonlinear stiffness term accounting for concentrated structural nonlinearities in the torsional

direction, and MðtÞ is the time dependent aerodynamic moment. A nondimensional form of the governing equation is
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Fig. 1. Schematic plot of the airfoil coordinate system and oscillation degree-of-freedom.
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often useful in aeroelastic analysis to investigate the effect of system parameters. The nondimensional form of (16)

(Fragiskatos, 1999)

a00 þ a=ðU2Þ þ Knla3 ¼ 2Cm=ðpmr2aÞ. (17)

Here, ð Þ0 denotes a derivative with respect to nondimensional time t ¼ tV̄=b, V̄ is the resultant velocity of the wind

velocity U and the rotational velocity Or as shown in Fig. 1, b is the semi-chord of the blade, Cm is the aerodynamic

moment coefficient, U is the nondimensional airspeed defined as U ¼ V̄=boa, m and ra are nondimensional structural

parameters, mass ratio m ¼ m=ðprb2Þ, radius of gyration ra ¼ Ia=ðmb2
Þ, Knl is the nondimensional form of

Knl1. Typical data for a 1000KW capacity wind turbine are used with a semi-chord of b ¼ 0:8m at 0:75 blade radius

and a representative resultant wind speed of V̄ ¼ 50m=s (Cheney and Migliore, 2000; Stiesdal, 1999).

The uncertain parameters in the structural model are the pitch natural frequency oa, the cubic structural nonlinearity

parameter Knl, and the structural equilibrium angle am. The uncertainty in oa is introduced in the model through

U. The deterministic value of the structural nonlinearity Knl is assumed to be zero. The parameter am is introduced in

the same way as shown by Fragiskatos (1999) and Price and Fragiskatos (2000). The airfoil is given its initial

perturbation about this angle. An extra moment is used to maintain this angle for the structure.

3.2. Aerodynamic stall model

The aerodynamic moment coefficient Cm in (17) is computed using the ONERA semi-empirical dynamic stall model,

as shown in Beedy et al. (2003) and Dunn and Dugundji (1992). This model gives a system of ordinary differential

equations for the aerodynamic loads. Using this type of semi-empirical aerodynamic models is common practice in

engineering aeroelastic problems. The physical process of dynamic stall involves leading and trailing edge vortex

development and their subsequent separation and shedding into the wake. Vortex growth increases suction and helps

increase the aerodynamic loads beyond their static stall values. Vortex separation from the body triggers a rapid

decrease of the loads. The ONERAmodel takes into account this complex unsteady phenomena step by step. A detailed

discussion on the ONERA dynamic stall model is given by Dunn and Dugundji (1992) and Tran and Petot (1981). The

differential equations are of the following form:

Cz ¼ sza0 þ kvzy
00
þ Cz1 þ Cz2 , (18)

C0z1 þ lzCz1 ¼ lzða0zaþ szy
0
Þ þ azða0za0 þ szy

00
Þ, (19)

C00z2 þ 2doC0z2 þ w2ð1þ d2
ÞCz2 ¼ �w2ð1þ d2

ÞðDCzjaþ eDC0zjaÞ, (20)

where the coefficients sz; kvz; lz; az; a0z; sz; d;w and e are empirically determined by parameter identification techniques

using experimental data. The values for the coefficients for the NACA0012 airfoil have been obtained from Dunn and

Dugundji (1992). The pitch angle y and the total angle of attack a ¼ y� h̄
0
, are equal in this case since only torsional

oscillations are considered. Here, h̄ is the nondimensional flapping displacement normalized with the airfoil chord.
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The coefficients Cz are the aerodynamic coefficient Cl , Cd or Cm for z ¼ fl; d ;mg. In this case, only the moment

coefficient Cm is of interest. The aerodynamic moment consists of two contributions: (i) the inviscid circulatory part Cm1

given by (19) and (ii) the viscous stall part Cm2
given by (20), which becomes important above the static stall angle. The

stall behavior is modeled in Eq. (20) by the DCm term. The DCm part is a nonlinear function which is identically zero

below the static stall angle of 121 at which it exhibits a discontinuous step to a finite value.

The nonlinear DCm term has a major influence on the implementation of the GPC method for the stall flutter model.

The Galerkin projection (9) applied to the dynamic stall flutter model (17)–(20) results in inner products (4) containing

nonlinear functions for the nonlinear terms involving Knl and DCm. The inner product with Knl can be tabulated in a

preprocessing step, since it contains polynomial nonlinearities only. The inner product of the terms containing DCm

involves a nonpolynomial nonlinearity in terms of a step function, which cannot be tabulated in a similar way. It is

known that the application of the GPC formulation is difficult for nonpolynomial nonlinearities [see some proposed

methods in Debusschere et al. (2004) and Witteveen and Bijl (2006b)]. Here the inner products containing DCm are

evaluated numerically using Simpson’s rule at each time level. A trial and error approach has been used to select the

sufficiently high number of integration points of 2500. The numerical integration contributes significantly towards

making the coupled GPC approach much slower compared to nonintrusive PC method.

A fourth order Runge–Kutta scheme is used with a time step size of Dt ¼ 0:01. This step size satisfies the criteria of

convergence of the time integration technique and is also commensurate with the frequency of oscillation. The

simulations are run up to t ¼ 800, by which the transient effects are well past and the response reaches time stationarity.

The simulation uses an initial perturbation of a0 ¼ 10� about a structural equilibrium mean angle of attack of am ¼ 4�.
4. Results

Numerical results are presented for the effect of uncertainty in three model parameters on the stall flutter response.

Uncertainty in the pitch natural frequency oa, the cubic structural nonlinearity parameter Knl, and the structural

equilibrium angle am is considered. For the first uncertain parameter, oa, the GPC method and the PC method are

compared. For the other two uncertain parameters, Knl and am, the PC method is used, which proved to be the more

efficient method for the current problem. GPC and PC results are compared with a 2500 point MC simulations. It is

well known that MC results go to the exact solution asymptotically as the sample size becomes infinitely large.

However, a very large sample size makes the computation prohibitively slow. In this work, sample size of 2500 is chosen

based on the feasibility of the computational cost involved.

4.1. Comparison of GPC and PC for uncertain pitch natural frequency oa

GPC and PC are compared for two test cases with an uncertain pitch natural frequency oa. The uncertainty in oa

effects the model through the bifurcation parameter U. The pitch natural frequency oa is varied corresponding to pre-

bifurcation and post-bifurcation values of U separately.

4.1.1. Uncertain pitch natural frequency oa in the pre-bifurcation domain

The deterministic bifurcation plot with respect to bifurcation parameter U is given in Fig. 2. The bifurcation plot is

given in terms of the maximum and minimum values of an oscillating response, which are those where the time

derivative of the response aðtÞ is zero. The deterministic model shows a supercritical Hopf bifurcation at approximately

U ¼ 16, where the angle of attack of the damped response reaches the stall angle of 12�. In the pre-bifurcation

domain the angle of attack at which the damped response stabilizes increases with U. Beyond the bifurcation point the

system exhibits a periodic response, which is known as a limit cycle oscillation (LCO), with increasing amplitude

as U increases.

The uncertainty of the nonnegative pitch natural frequency oa is described by a lognormal distribution with mean

moa
¼ 6:25 rad=s, with a coefficient of variation (CV) of CVoa ¼ 1:5%. This corresponds to U ¼ 10 using the test data

of V̄ ¼ 50m=s and b ¼ 0:8m, as was mentioned in Section 3.1. In Fig. 3 the distribution of oa and the corresponding U

values are shown. The variation of U is well below the critical U ¼ 15:5 value, such that aðtÞ exhibits a nonoscillatory

damped solution.

The propagation of uncertainty through the model is computed using the GPC method and the PC method with a

fourth order expansion with N ¼ 4. In Fig. 4 the approximations of the distribution function of the response aðtÞ at
t ¼ 800 are compared to MC simulation results based on 2500 realizations. For this pre-bifurcation case, the results of

GPC and PC both compare well with the MC results already for relatively low order expansions.
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In Fig. 5 the reconstruction of a typical time history from the GPC and PC results is compared with the deterministic

realization for U ¼ 10:2 in the lower tail of the probability distribution of oa. The response aðtÞ stays below the stall

angle of 12� and shows a decaying solution as expected. The reconstructed time histories match accurately with the

deterministic realization.

4.1.2. Uncertain pitch natural frequency oa in the post-bifurcation domain

For the post-bifurcation case the mean of the pitch natural frequency oa is given by oa ¼ 3:68 rad/s, which

corresponds to U ¼ 17 using the test data of V̄ ¼ 50m=s and b ¼ 0:8m. In Fig. 6 the probability distribution of oa and

the variation of U is shown. The realizations of U are well in the deterministic post-bifurcation range, see Fig. 2. In

Fig. 7 the results of GPC, PC and MC simulation are presented in terms of the minimum and maximum values of the

oscillating periodic response, amin and amax, during one period as function of oa. GPC response results are compared for

increasing expansion order N ¼ f2; 4; 8g in Fig. 8. The GPC method with N ¼ 2 results in an inaccurate representation

of the response. For increasing N the results become better and for N ¼ 8 the approximation matches the MC results

almost exactly (Fig. 7). The PC results match both with the GPC results for N ¼ 8 and the MC simulation results.

The approximation of a typical time history for U ¼ 17:3, is shown in Fig. 9. It is known that polynomial chaos

expansions have difficulty resolving a periodic time history, because of the increasing nonlinearity of the response for

long-term time integration (Pettit and Beran, 2006). The low order polynomial chaos expansion with N ¼ 2 falls indeed

short in modeling the periodic response after short-term time integration at t ¼ 300. It has been reported by Pettit and

Beran (2006) and Wan and Karniadakis (2006b) that increasing the polynomial chaos order does not increase the
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accuracy significantly. However, in this case a relatively small increase of the order of the expansion to N ¼ 8 results in

an accurate prediction of the time series up till t ¼ 800. This could be attributed to the relatively small effect of

uncertain oa on the frequency of the system response (Wan and Karniadakis, 2006b).

The accuracy of the GPC method and the PC method of the same order N is comparable. The relative computational

efficiency of the methods is compared to that of MC simulation in Table 1. For an MC simulation of comparable

accuracy up to t ¼ 500 a number of 2500 realizations is employed. For the pre-bifurcation case of Section 4.1.1, both

methods are at least a factor 40 faster than the standard MC technique, for which it takes approximately 4.5 h to

complete the 2500 deterministic simulations. The computational time for solving the coupled equations in GPC is for

this case relatively close to that of the nonintrusive PC, because explicit time integration is used and the system response

remains in the linear pre-stall domain.

The nonlinear stall model containing nonpolynomial step function nonlinearity is important in the post-bifurcation

domain. The CPU time for the PC approach is not affected significantly by the nonlinear terms. PC uses nine

deterministic runs only and the post-processing using the Lagrange polynomial chaos is also not much time consuming.

In contrast, GPC becomes slower by a factor of 75 compared to the pre-bifurcation case. This is caused by numerical
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Table 1

Comparison of the order of the CPU times by Galerkin polynomial chaos, probabilistic collocation and Monte Carlo simulation till

t ¼ 500

GPC PC MC

Pre-bifurcation 7min (N ¼ 4) 2min (N ¼ 4) � 4:5 h (2500 realizations)

Post-bifurcation 8.9 h (N ¼ 8) 3min (N ¼ 8) � 4:5 h (2500 realizations)
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integration of the inner products containing the nonlinear terms at every time level. For this highly nonlinear case GPC

is even twice as slow as MC simulation. These results demonstrate for this case an decrease of computational time of

two orders of magnitude for PC compared to GPC. Therefore, in the rest of this paper the PC approach is used.

4.2. Uncertain cubic structural nonlinearity parameter Knl

In the earlier part, the structural nonlinearity parameter Knl was assumed to be zero. In this section, Knl is nonzero

and assumed to be uncertain described by a lognormal distribution with a mean of mKnl
¼ 0:001 and a CV of

CVKnl
¼ 15%. The effect on the overall bifurcation behavior of the system with respect to bifurcation parameter U is

considered. Due to the high CV at least 15 collocation points are required in order to achieve convergence. This is rather

high compared to the previous case where a maximum of nine points were used (corresponding to order 8). However,

the coefficient of variation CVKnl
is higher than the earlier case which requires such a choice in order to match

deterministic solutions. A convergence study was performed in such a way that time histories corresponding to 99:8%
of the domain match with that of deterministic results. This results in a minimum value of 15 collocation points; below

which PC results show discrepancies with the deterministic solution.

The bifurcation diagram with the 99:8% uncertainty bars is shown in Fig. 10. The bifurcation parameter U is varied

with 0:05 intervals between U ¼ 15:5 and 16:5. With this resolution the closest estimate of the shift of the supercritical

Hopf bifurcation point due to the nonzero nonlinear stiffness indicated in the figure is at Ucr ¼ 15:85. Above the

bifurcation point the systems exhibits LCOs and below U ¼ 15:85 the response shows damped oscillations or stable

fixed points. The uncertainty bar suggests that the overall effect of the uncertainty in the structural nonlinearity

parameter Knl on the bifurcation behavior is weak. The effect is smallest for the post-bifurcation values of amax.

In Fig. 11 a zoom of the critical range of U with smaller intervals of 0.01 is shown. In this plot it is examined whether

a shift in the stall flutter boundary occurs as a result of the uncertainty in Knl. To that end the bifurcation plot for three

realizations for o ¼ f0:002; 0:5; 0:998g are reconstructed from the PC results. The o value of 0:5 corresponds to the

median of uncertain parameter Knl and the two other realizations correspond to two realizations in the tails. The figure

indicates that the effect of the uncertainty in Knl on the stall flutter boundary is small. The flutter boundary shifts from

U ¼ 15:81 to 15:83 between the three branches.
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4.3. Uncertain structural equilibrium angle am

The structural equilibrium angle am (Fragiskatos, 1999) is considered to be uncertain with a mean mam
¼ 4�, a CV of

CV am
¼ 15% and a lognormal distribution. The number of collocation points is chosen as 15 following a convergence

study similar to the earlier case. The bifurcation plot with 99:8% uncertainty bars is shown in Fig. 12. In the post-

bifurcation domain both the minimum and maximum response, and thus the amplitude of the periodic response, are

sensitive to the system parametric uncertainty. The uncertain am has the largest effect on the minimum response amin in

the post-bifurcation domain, which is demonstrated by the uncertainty bars with length 6�. The resulting uncertain

maximum response amax in the post-bifurcation domain is described by a 3� uncertainty bar. The uncertainty bar in the

pre-bifurcation domain has a length of 4�.

In Figs. 13–15 the probability distribution function and probability density function of the response are presented at

three characteristic U values U ¼ f12:5; 15:5; 21g to identify the bifurcation trend in the probability density function. At

U ¼ 12:5, shown in Fig. 13, the response is damped in the entire domain. For that case the probability density of the

damped response shows a maximum around a ¼ 7:3�.
For U ¼ 15:5 shown in Fig. 14 both damped and oscillatory realizations are present. This results

in a clearly nonlinear propagation of uncertainty to the response. Due to the oscillatory realizations
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the system shows different values for the minimum and maximum response. The probability density of amin

is highly deformed due to the nonmonotonic dependence on am. The probability of amax shows a maximum

around 12:3�.
A third type of behavior is encountered further at U ¼ 21. In that case, the entire domain shows oscillatory behavior.

As a result, both the maximum and the minimum response exhibit monotonic behavior as function of am. The

probability density functions of the minimum and maximum response show two clearly distinguishable maxima, shown

in Fig. 15. The probability of the minimum response has a maximum around 7:7� and the maximum response around

13:9�. These results are summarized in Fig. 16 in the form of a bifurcation diagram in combination with three

realizations for o ¼ f0:002; 0:5; 0:998g. The minimum and maximum response show qualitatively different probability

density functions in different bifurcation domains. Near the deterministic bifurcation point of U ¼ 16 the effect of the

parametric uncertainty on the response is most nonlinear.

The uncertainty in the structural equilibrium angle am also affects the position of the flutter point. In Fig. 17 the

probability distribution of the bifurcation point is given. Based on the probability distribution it can be concluded that

the flutter point is reduced by 12.5% to U ¼ 14 due to the uncertain am, if a 5% probability of flutter is deemed
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acceptable. This demonstrates the importance of the probabilistic modeling of uncertainties in the analysis of pitching

stall flutter, since this approach can quantify the earlier onset of unstable behavior compared to the deterministic

bifurcation point in a probabilistic sense.
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5. Concluding remarks

The bifurcation behavior of pitching airfoil stall flutter subject to uncertain variation of system parameters is studied.

The structure is modeled as a two-dimensional rigid airfoil with cubic nonlinear torsional stiffness. The ONERA

dynamic stall model is used to compute the aerodynamic loading. An uncertain pitch natural frequency oa, cubic

structural nonlinearity parameter Knl, and structural equilibrium angle am are considered.

The problem is a simple model problem to understand the mechanism of stall flutter in a stochastic framework. The

choice of the uncertain parameters is, however, more practical. The parameters which have been assumed to be random

are torsional frequency oa which is determined from laboratory dynamical experiments and it could encounter various

sources of uncertainty based on the laboratory conditions. Knl stands for various sources of analytic nonlinearities.

According to some aeroelasticity literature (Lee and Tron, 1989; Tang and Dowell, 1993b), these often represents

different control mechanisms. Therefore Knl could face modeling uncertainties. Similarly there could be uncertain

sources of error in implementing the structural equilibrium angle.

The Galerkin polynomial chaos method and the probabilistic collocation method are applied to propagate the

uncertainty through the system. The focus of this work is to investigate the success of these techniques for a stall flutter

problem in linear and nonlinear regime and also with high level of uncertainty. It was to see how the flutter stability

characteristics are altered due to these effects. The choice of some of the parameters like the coefficient of variation

(CV) is made so as to make the system adequately sensitive to the uncertain variation of the chosen parameters.

The results of both methods are compared to an MC reference solution for the case with uncertainty in the pitch

natural frequency oa. In the pre-bifurcation domain the polynomial chaos methods are both significantly more efficient

than MC simulation. The computational costs of the GPC method in the post-bifurcation domain are of the same order

as MC simulation owing to the nonpolynomial nonlinearity of the model above the static stall angle. The bifurcation

does not affect the computational costs of the PC method significantly. In the post-bifurcation case low order

polynomial chaos expansions fail to predict the periodic response after short-term time integration up to t ¼ 300. An

eighth order polynomial chaos expansion is sufficient to maintain an accurate solution till around t ¼ 800, well after the

system reaches time stationarity.

The effect of the uncertain cubic structural nonlinearity parameter Knl and structural equilibrium angle am are

studied using the PC method. Uncertainty in am has the largest effect on the bifurcation behavior of the system. It

results in 3–6� uncertainty bars for the response, which affects the amplitude of the periodic response in the post-

bifurcation domain. The minimum and maximum response show qualitatively different probability density functions at

different domains of the bifurcation plot. The uncertainty in am results in a flutter point which is 12.5% lower than the

deterministic prediction if 5% probability of flutter is deemed acceptable. This demonstrates that parametric

uncertainties in pitching airfoil stall flutter can lead to an earlier onset of unstable behavior than a deterministic analysis

would point out.

This study successfully uses the uncoupled and nonintrusive PC approach to quantify the effect of uncertain

parametric variation of a stall flutter system. The stall flutter model is simple and yet can predict the nature of

instabilities that can occur in an actual system. Therefore, the stochastic modeling of the present system will be helpful
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towards the aeroelastic design of a real-life stall flutter device without being too computationally intensive. In this work,

the PC approach is used to capture the period-1 LCOs. As a next step, we would like to investigate capturing higher

periodic responses as well.
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